All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Defect-Engineered Hydroxylated Mesoporous Spinel Oxides as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455410" target="_blank" >RIV/00216208:11320/22:10455410 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QZc4JjZ9K2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QZc4JjZ9K2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.2c00254" target="_blank" >10.1021/acsami.2c00254</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Defect-Engineered Hydroxylated Mesoporous Spinel Oxides as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions

  • Original language description

    In this work, defect-rich ordered mesoporous spinel oxides, including CoCo2O4, NiCo2O4, and ZnCo2O4, were developed as bifunctional electrocatalysts toward oxygen reduction and evolution reactions (ORR and OER, respectively). The materials are synthesized via nanocasting and modified by chemical treatment with 0.1 M NaBH4 solution to enhance the defect concentration. The synthesized samples have metal and oxygen divacancies (V-Co + V-O) as the primary defect sites, as indicated by positron annihilation lifetime spectroscopy (PALS). Cation substitution in the spinel structure induces a higher number of oxygen vacancies. The increased number of surface defects and the synergistic effect between two incorporated metals provide a high activity in both the OER and ORR in the case of NiCo2O4 and ZnCo2O4. Especially, ZnCo2O4 exhibits the highest OER/ORR activity. The defect engineering with 0.1 M NaBH4 solution results in a metal-hydroxylated surface (M-OH) and enhanced the catalytic activity for the post-treated metal oxides in the ORR and OER. This fundamental investigation of the defective structure of the mixed metal oxides offers some useful insights into further development of highly active electrocatalysts through defect engineering methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Materials &amp; Interfaces

  • ISSN

    1944-8244

  • e-ISSN

    1944-8252

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    20

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    23307-23321

  • UT code for WoS article

    000821777200054

  • EID of the result in the Scopus database

    2-s2.0-85131136351