All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-isothermal viscoelastic flows with conservation laws and relaxation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455586" target="_blank" >RIV/00216208:11320/22:10455586 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~O6j_CTbuJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~O6j_CTbuJ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0219891622500096" target="_blank" >10.1142/S0219891622500096</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-isothermal viscoelastic flows with conservation laws and relaxation

  • Original language description

    We propose a system of conservation laws with relaxation source terms (i.e. balance laws) for non-isothermal viscoelastic flows of Maxwell fluids. The system is an extension of the polyconvex elastodynamics of hyperelastic bodies using additional structure variables. It is obtained by writing the Helmholtz free energy as the sum of a volumetric energy density (function of the determinant of the deformation gradient detF and the temperature theta like the standard perfect-gas law or Noble-Abel stiffened-gas law) plus a polyconvex strain energy density function of F, theta and of symmetric positive-definite structure tensors that relax at a characteristic time scale. One feature of our model is that it unifies various ideal materials ranging from hyperelastic solids to perfect fluids, encompassing fluids with memory like Maxwell fluids. We establish a strictly convex mathematical entropy to show that the system is symmetric-hyperbolic. Another feature of the proposed model is therefore the short-time existence and uniqueness of smooth solutions, which define genuinely causal viscoelastic flows with waves propagating at finite speed. In heat-conductors, we complement the system by a Maxwell-Cattaneo equation for an energy-flux variable. The system is still symmetric-hyperbolic, and smooth evolutions with finite-speed waves remain well-defined.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GX20-11027X" target="_blank" >GX20-11027X: Mathematical analysis of partial differential equations describing far-from-equilibrium open systems in continuum thermodynamics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Hyperbolic Differential Equations

  • ISSN

    0219-8916

  • e-ISSN

    1793-6993

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    02

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    337-364

  • UT code for WoS article

    000840562700005

  • EID of the result in the Scopus database