All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Polynomial-time Algorithm for Maximum Weight Independent Set on P6-free Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455778" target="_blank" >RIV/00216208:11320/22:10455778 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9l0I.d-wh0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9l0I.d-wh0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3414473" target="_blank" >10.1145/3414473</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Polynomial-time Algorithm for Maximum Weight Independent Set on P6-free Graphs

  • Original language description

    In the classic Maximum Weight Independent Set problem, we are given a graph G with a nonnegative weight function on its vertices, and the goal is to find an independent set in G of maximum possible weight. While the problem is NP-hard in general, we give a polynomial-time algorithm working on any P6-free graph, that is, a graph that has no path on 6 vertices as an induced subgraph. This improves the polynomial-time algorithm on P5-free graphs of Lokshtanov et al. [15] and the quasipolynomial-time algorithm on P6-free graphs of Lokshtanov et al. [14]. The main technical contribution leading to our main result is enumeration of a polynomial-size family ℱ of vertex subsets with the following property: For every maximal independent set I in the graph, ℱ contains all maximal cliques of some minimal chordal completion of G that does not add any edge incident to a vertex of I.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACM Transactions on Algorithms

  • ISSN

    1549-6325

  • e-ISSN

  • Volume of the periodical

    Neuveden

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    57

  • Pages from-to

    1-57

  • UT code for WoS article

    000944887800004

  • EID of the result in the Scopus database