All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Dolbeault-Dirac Spectral Triple for the B2-Irreducible Quantum Flag Manifold

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455786" target="_blank" >RIV/00216208:11320/22:10455786 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=v1NjOKr4mq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=v1NjOKr4mq</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00220-022-04435-5" target="_blank" >10.1007/s00220-022-04435-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Dolbeault-Dirac Spectral Triple for the B2-Irreducible Quantum Flag Manifold

  • Original language description

    The quantum version of the Bernstein-Gelfand-Gelfand resolution is used to construct a Dolbeault-Dirac operator on the anti-holomorphic forms of the Heckenberger-Kolb calculus for the B2-irreducible quantum flag manifold. The spectrum and the multiplicities of the eigenvalues of the Dolbeault-Dirac operator are computed. It is shown that this construction yields an equivariant, even, 0+-summable spectral triple.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Mathematical Physics

  • ISSN

    0010-3616

  • e-ISSN

    1432-0916

  • Volume of the periodical

    2022/395

  • Issue of the periodical within the volume

    395

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    39

  • Pages from-to

    365-403

  • UT code for WoS article

    000838468200001

  • EID of the result in the Scopus database

    2-s2.0-85136916336