All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lines in the Plane with the L1 Metric

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455858" target="_blank" >RIV/00216208:11320/22:10455858 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cDi5EmTJ_J" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cDi5EmTJ_J</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-022-00443-3" target="_blank" >10.1007/s00454-022-00443-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lines in the Plane with the L1 Metric

  • Original language description

    A well-known theorem in plane geometry states that any set of n non-collinear points in the plane determines at least n lines. Chen and Chvátal asked whether an analogous statement holds within the framework of finite metric spaces, with lines defined using the notion of betweenness. In this paper, we prove that in the plane with the L1 (also called Manhattan) metric, a non-collinear set of n points induces at least LEFT CEILING n/ 2 RIGHT CEILING lines. This is an improvement of the previous lower bound of n/37, with substantially different proof. As a consequence, we also get the same lower bound for non-collinear point sets in the plane with the Loo metric.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ19-04113Y" target="_blank" >GJ19-04113Y: Advanced tools in combinatorics, topology and related areas</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete and Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

    1432-0444

  • Volume of the periodical

    Neuveden

  • Issue of the periodical within the volume

    October 1, 2022

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000862530500001

  • EID of the result in the Scopus database

    2-s2.0-85139219133