A Computational Study of Using Black-box QR Solvers for Large-scale Sparse-dense Linear Least Squares Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455899" target="_blank" >RIV/00216208:11320/22:10455899 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WG6Hj86Itn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WG6Hj86Itn</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3494527" target="_blank" >10.1145/3494527</a>
Alternative languages
Result language
angličtina
Original language name
A Computational Study of Using Black-box QR Solvers for Large-scale Sparse-dense Linear Least Squares Problems
Original language description
Large-scale overdetermined linear least squares problems arise in many practical applications. One popular solution method is based on the backward stable QR factorization of the system matrix A. This article focuses on sparse-dense least squares problems in which A is sparse except from a small number of rows that are considered dense. For large-scale problems, the direct application of a QR solver either fails because of insufficient memory or is unacceptably slow. We study several solution approaches based on using a sparse QR solver without modification, focussing on the case that the sparse part of A is rank deficient. We discuss partial matrix stretching and regularization and propose extending the augmented system formulation with iterative refinement for sparse problems to sparse-dense problems, optionally incorporating multi-precision arithmetic. In summary, our computational study shows that, before applying a black-box QR factorization, a check should be made for rows that are classified as dense and, if such rows are identified, then A should be split into sparse and dense blocks; a number of ways to use a black-box QR factorization to exploit this splitting are possible, with no single method found to be the best in all cases.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACM Transactions on Mathematical Software
ISSN
0098-3500
e-ISSN
1557-7295
Volume of the periodical
48
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
5
UT code for WoS article
000759468700010
EID of the result in the Scopus database
2-s2.0-85125196454