All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Charge-induced chemical dynamics in glycine probed with time-resolved Auger electron spectroscopy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456288" target="_blank" >RIV/00216208:11320/22:10456288 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qAIvPbPcd6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qAIvPbPcd6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/4.0000165" target="_blank" >10.1063/4.0000165</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Charge-induced chemical dynamics in glycine probed with time-resolved Auger electron spectroscopy

  • Original language description

    In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of (-0.3 +/- 0.1 ) pi &lt;= phi &lt;= ( 0.1 +/- 0.2 ) pi and 18.2(-1.4)(+1.7) &lt;= T &lt;= 23.9(-1.1)(+1.2 )fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates. (C) 2022 Author(s).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Structural Dynamics

  • ISSN

    2329-7778

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    064301

  • UT code for WoS article

    000882452200001

  • EID of the result in the Scopus database

    2-s2.0-85143198538