Penrose junction conditions with Lambda: geometric insights into low-regularity metrics for impulsive gravitational waves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456328" target="_blank" >RIV/00216208:11320/22:10456328 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6L4_IZ8YTw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6L4_IZ8YTw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10714-022-02977-6" target="_blank" >10.1007/s10714-022-02977-6</a>
Alternative languages
Result language
angličtina
Original language name
Penrose junction conditions with Lambda: geometric insights into low-regularity metrics for impulsive gravitational waves
Original language description
Impulsive gravitational waves in Minkowski space were introduced by Roger Penrose at the end of the 1960s, and have been widely studied over the decades. Here we focus on nonexpanding waves which later have been generalized to impulses traveling in all constant-curvature backgrounds, i.e., the (anti-)de Sitter universe. While Penrose's original construction was based on his vivid geometric "scissors-and-paste" approach in a flat background, until recently a comparably powerful visualization and understanding has been missing in the case with a cosmological constant Lambda not equal 0. Here we review the original Penrose construction and its generalization to non-vanishing Lambda in a pedagogical way, as well as the recently established visualization: A special family of global null geodesics defines an appropriate comoving coordinate system that allows to relate the distributional to the continuous form of the metric.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GA20-05421S" target="_blank" >GA20-05421S: Exact Spacetimes in Einstein’s Theory, Quadratic Gravity, and Other Generalizations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
General Relativity and Gravitation
ISSN
0001-7701
e-ISSN
1572-9532
Volume of the periodical
54
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
96
UT code for WoS article
000851253300001
EID of the result in the Scopus database
2-s2.0-85137559351