WEAK-STRONG UNIQUENESS FOR AN ELASTIC PLATE INTERACTING WITH THE NAVIER-STOKES EQUATIONast
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456728" target="_blank" >RIV/00216208:11320/22:10456728 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4mQseUupN9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4mQseUupN9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1443509" target="_blank" >10.1137/21M1443509</a>
Alternative languages
Result language
angličtina
Original language name
WEAK-STRONG UNIQUENESS FOR AN ELASTIC PLATE INTERACTING WITH THE NAVIER-STOKES EQUATIONast
Original language description
We show weak-strong uniqueness and stability results for the motion of a two- or three-dimensional fluid governed by the Navier-Stokes equation interacting with a flexible, elastic plate of Koiter type. The plate is situated at the top of the fluid and as such determines the variable part of a time changing domain (that is hence a part of the solution) containing the fluid. The uniqueness result is a consequence of a stability estimate where the difference of two solutions is estimated by the distance of the initial values and outer forces. For that we introduce a methodology that overcomes the problem that the two (variable in time) domains of the fluid velocities and pressures are not the same. The estimate holds under the assumption that one of the two weak solutions possesses some additional higher regularity. The additional regularity is exclusively requested for the velocity of one of the solutions resembling the celebrated Ladyzhenskaya-Prodi-Serrin conditions in the given framework.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
1095-7154
Volume of the periodical
54
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
35
Pages from-to
4104-4138
UT code for WoS article
000841107900002
EID of the result in the Scopus database
2-s2.0-85135226033