All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

AM-modulus and Hausdorff measure of codimension one in metric measure spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456734" target="_blank" >RIV/00216208:11320/22:10456734 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ORXhg6A3a3" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ORXhg6A3a3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.202000059" target="_blank" >10.1002/mana.202000059</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    AM-modulus and Hausdorff measure of codimension one in metric measure spaces

  • Original language description

    Let Gamma(E) be the family of all paths which meet a set E in the metric measure space X. The set function E bar right arrow AM (Gamma(E)) defines the AM-modulus measure in X where AM refers to the approximation modulus [22]. We compare AM (Gamma(E)) to the Hausdorff measure coH(1) (E) of codimension one in X and show that coH(1)(E) approximate to AM(Gamma(E)) for Suslin sets E in X. This leads to a new characterization of sets of finite perimeter in X in terms of the AM-modulus. We also study the level sets of BV functions and show that for a.e. t. these sets have finite coH(1)-measure. Most of the results are new also in R-n.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

    1522-2616

  • Volume of the periodical

    295

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    18

  • Pages from-to

    140-157

  • UT code for WoS article

    000748640900009

  • EID of the result in the Scopus database

    2-s2.0-85122696083