CUNI Non-Autoregressive System for the WMT 22 Efficient Translation Shared Task
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456995" target="_blank" >RIV/00216208:11320/22:10456995 - isvavai.cz</a>
Result on the web
<a href="https://statmt.org/wmt22/pdf/2022.wmt-1.64.pdf" target="_blank" >https://statmt.org/wmt22/pdf/2022.wmt-1.64.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
CUNI Non-Autoregressive System for the WMT 22 Efficient Translation Shared Task
Original language description
We present a non-autoregressive system submission to the WMT 22 Efficient Translation Shared Task. Our system was used by Helcl et al. (2022) in an attempt to provide fair comparison between non-autoregressive and autoregressive models. This submission is an effort to establish solid baselines along with sound evaluation methodology, particularly in terms of measuring the decoding speed. The model itself is a 12-layer Transformer model trained with connectionist temporal classification on knowledge-distilled dataset by a strong autoregressive teacher model.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů