All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Combining Static and Contextualised Multilingual Embeddings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457003" target="_blank" >RIV/00216208:11320/22:10457003 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2022.findings-acl.182" target="_blank" >https://aclanthology.org/2022.findings-acl.182</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2022.findings-acl.182" target="_blank" >10.18653/v1/2022.findings-acl.182</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Combining Static and Contextualised Multilingual Embeddings

  • Original language description

    Static and contextual multilingual embeddings have complementary strengths. Static embeddings, while less expressive than contextual language models, can be more straightforwardly aligned across multiple languages. We combine the strengths of static and contextual models to improve multilingual representations. We extract static embeddings for 40 languages from XLM-R, validate those embeddings with cross-lingual word retrieval, and then align them using VecMap. This results in high-quality, highly multilingual static embeddings. Then we apply a novel continued pre-training approach to XLM-R, leveraging the high quality alignment of our static embeddings to better align the representation space of XLM-R. We show positive results for multiple complex semantic tasks. We release the static embeddings and the continued pre-training code. Unlike most previous work, our continued pre-training approach does not require parallel text.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Findings of the Association for Computational Linguistics: ACL 2022

  • ISBN

    978-1-955917-25-4

  • ISSN

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    2316-2329

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburg, PA, USA

  • Event location

    Dublin, Ireland

  • Event date

    May 22, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000828767402030