Combining Static and Contextualised Multilingual Embeddings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457003" target="_blank" >RIV/00216208:11320/22:10457003 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2022.findings-acl.182" target="_blank" >https://aclanthology.org/2022.findings-acl.182</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.findings-acl.182" target="_blank" >10.18653/v1/2022.findings-acl.182</a>
Alternative languages
Result language
angličtina
Original language name
Combining Static and Contextualised Multilingual Embeddings
Original language description
Static and contextual multilingual embeddings have complementary strengths. Static embeddings, while less expressive than contextual language models, can be more straightforwardly aligned across multiple languages. We combine the strengths of static and contextual models to improve multilingual representations. We extract static embeddings for 40 languages from XLM-R, validate those embeddings with cross-lingual word retrieval, and then align them using VecMap. This results in high-quality, highly multilingual static embeddings. Then we apply a novel continued pre-training approach to XLM-R, leveraging the high quality alignment of our static embeddings to better align the representation space of XLM-R. We show positive results for multiple complex semantic tasks. We release the static embeddings and the continued pre-training code. Unlike most previous work, our continued pre-training approach does not require parallel text.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Findings of the Association for Computational Linguistics: ACL 2022
ISBN
978-1-955917-25-4
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
2316-2329
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Dublin, Ireland
Event date
May 22, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000828767402030