AARGH! End-to-end Retrieval-Generation for Task-Oriented Dialog
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457050" target="_blank" >RIV/00216208:11320/22:10457050 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2022.sigdial-1.29/" target="_blank" >https://aclanthology.org/2022.sigdial-1.29/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
AARGH! End-to-end Retrieval-Generation for Task-Oriented Dialog
Original language description
We introduce AARGH, an end-to-end task-oriented dialog system combining retrieval and generative approaches in a single model, aiming at improving dialog management and lexical diversity of outputs. The model features a new response selection method based on an action-aware training objective and a simplified single-encoder retrieval architecture which allow us to build an end-to-end retrieval-enhanced generation model where retrieval and generation share most of the parameters. On the MultiWOZ dataset, we show that our approach produces more diverse outputs while maintaining or improving state tracking and context-to-response generation performance, compared to state-of-the-art baselines.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue
ISBN
978-1-955917-66-7
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
283-297
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburgh, PA, USA
Event location
Edinburgh, UK
Event date
Sep 7, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—