Person Authentication using Visual Representations of Keyboard Typing Dynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10469908" target="_blank" >RIV/00216208:11320/22:10469908 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/SNAMS58071.2022.10062739" target="_blank" >https://doi.org/10.1109/SNAMS58071.2022.10062739</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SNAMS58071.2022.10062739" target="_blank" >10.1109/SNAMS58071.2022.10062739</a>
Alternative languages
Result language
angličtina
Original language name
Person Authentication using Visual Representations of Keyboard Typing Dynamics
Original language description
In this paper, we focus on the problem of user's authentication through typing dynamics patterns. We specifically focus on small-sized problems, where it is difficult to fully train corresponding machine (deep) learning algorithms from scratch. Instead, we propose a different approach based on the visualization of the typing patterns and subsequent usage of pre-trained feature extractors from the computer vision domain. We evaluated the approach on a publicly-available dataset and results indicate that this is a viable solution capable to improve over several baselines. Moreover, the proposed visual representation of the data contributes to the explainability of AI.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-21696S" target="_blank" >GA22-21696S: Deep Visual Representations of Unstructured Data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2022 9th International Conference on Social Networks Analysis, Management and Security, SNAMS 2022
ISBN
979-8-3503-2048-0
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
IEEE
Place of publication
Neuveden
Event location
Milan, Italy
Event date
Nov 28, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—