Training Dataset and Dictionary Sizes Matter in BERT Models: The Case of Baltic Languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A4SGWFY9I" target="_blank" >RIV/00216208:11320/22:4SGWFY9I - isvavai.cz</a>
Result on the web
<a href="https://www.researchgate.net/publication/357201955_Training_dataset_and_dictionary_sizes_matter_in_BERT_models_the_case_of_Baltic_languages" target="_blank" >https://www.researchgate.net/publication/357201955_Training_dataset_and_dictionary_sizes_matter_in_BERT_models_the_case_of_Baltic_languages</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-16500-9_14" target="_blank" >10.1007/978-3-031-16500-9_14</a>
Alternative languages
Result language
angličtina
Original language name
Training Dataset and Dictionary Sizes Matter in BERT Models: The Case of Baltic Languages
Original language description
Large pretrained masked language models have become state-of-the-art solutions for many NLP problems. While studies have shown that monolingual models produce better results than multilingual models, the training datasets must be sufficiently large. We trained a trilingual LitLat BERT-like model for Lithuanian, Latvian, and English, and a monolingual Est-RoBERTa model for Estonian. We evaluate their performance on four downstream tasks: named entity recognition, dependency parsing, part-of-speech tagging, and word analogy. To analyze the importance of focusing on a single language and the importance of a large training set, we compare created models with existing monolingual and multilingual BERT models for Estonian, Latvian, and Lithuanian. The results show that the newly created LitLat BERT and Est-RoBERTa models improve the results of existing models on all tested tasks in most situations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Analysis of Images, Social Networks and Texts
ISBN
978-3-031-16500-9
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
162-172
Publisher name
Springer International Publishing
Place of publication
—
Event location
Cham
Event date
Jan 1, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—