DadmaTools: Natural Language Processing Toolkit for Persian Language
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AWT3HQ5A5" target="_blank" >RIV/00216208:11320/22:WT3HQ5A5 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2022.naacl-demo.13" target="_blank" >https://aclanthology.org/2022.naacl-demo.13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.naacl-demo.13" target="_blank" >10.18653/v1/2022.naacl-demo.13</a>
Alternative languages
Result language
angličtina
Original language name
DadmaTools: Natural Language Processing Toolkit for Persian Language
Original language description
We introduce DadmaTools, an open-source Python Natural Language Processing toolkit for the Persian language. The toolkit is a neural pipeline based on spaCy for several text processing tasks, including normalization, tokenization, lemmatization, part-of-speech, dependency parsing, constituency parsing, chunking, and ezafe detecting. DadmaTools relies on fine-tuning of ParsBERT using the PerDT dataset for most of the tasks. Dataset module and embedding module are included in DadmaTools that support different Persian datasets, embeddings, and commonly used functions for them. Our evaluations show that DadmaTools can attain state-of-the-art performance on multiple NLP tasks. The source code is freely available at https://github.com/Dadmatech/DadmaTools.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations
ISBN
978-1-955917-74-2
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
124-130
Publisher name
Association for Computational Linguistics
Place of publication
—
Event location
Hybrid: Seattle, Washington + Online
Event date
Jan 1, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—