Mass-ratio distribution of contact binary stars
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10467330" target="_blank" >RIV/00216208:11320/23:10467330 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1.bIwjIzo6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1.bIwjIzo6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202245613" target="_blank" >10.1051/0004-6361/202245613</a>
Alternative languages
Result language
angličtina
Original language name
Mass-ratio distribution of contact binary stars
Original language description
The mass ratio q of a contact binary star evolves through mass transfer, magnetic braking, and thermal relaxation oscillations to low values until it crosses a critical threshold q(min). When this occurs, the binary undergoes the tidal Darwin instability, leading to a rapid coalescence of the components and to an observable brightening of the system. The distribution of q has not been measured on a sufficiently large population of contact binary stars so far because determining q for a single contact binary usually requires spectroscopy. As was shown previously, however, it is possible to infer the mass-ratio distribution of the entire population of contact binaries from the observed distribution of their light-curve amplitudes. Employing Bayesian inference, we obtained a sample of contact binary candidates from the Kepler Eclipsing Binary Catalog combined with data from Gaia and estimates of effective temperatures. We assigned a probability of being a contact binary of either late or early type to each candidate. Overall, our sample includes about 300 late-type and 200 early-type contact binary candidates. We modeled the amplitude distribution assuming that mass ratios are described by a power law with an exponent b and a cutoff at q(min). We find q(min) = 0.087(-0.015)(+0.024) for late-type contact binaries with periods longer than 0.3 days. For late-type binaries with shorter periods, we find q(min) = 0.246(-0.046)(+0.029) , but the sample is small. For early-type contact binary stars with periods shorter than one day, we obtain q(min) = 0.030(-0.022)(+0.018) . These results indicate a dependence of q(min) on the structure of the components, and they are broadly compatible with previous theoretical predictions. We do not find any clear trends in b. Our method can easily be extended to large samples of contact binaries from TESS and other space-based surveys.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/LTAUSA18093" target="_blank" >LTAUSA18093: Time-variability in astronomy: participation in project All-Sky Automated Survey for Supernovae</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Volume of the periodical
672
Issue of the periodical within the volume
April
Country of publishing house
FR - FRANCE
Number of pages
27
Pages from-to
A176
UT code for WoS article
000974975600010
EID of the result in the Scopus database
2-s2.0-85156274476