A NOTE ON THE EXISTENCE OF GIBBS MARKED POINT PROCESSES WITH APPLICATIONS IN STOCHASTIC GEOMETRY
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10467802" target="_blank" >RIV/00216208:11320/23:10467802 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rp2BJC.mzs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rp2BJC.mzs</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2023-1-0130" target="_blank" >10.14736/kyb-2023-1-0130</a>
Alternative languages
Result language
angličtina
Original language name
A NOTE ON THE EXISTENCE OF GIBBS MARKED POINT PROCESSES WITH APPLICATIONS IN STOCHASTIC GEOMETRY
Original language description
This paper generalizes a recent existence result for infinite-volume marked Gibbs point processes. We try to use the existence theorem for two models from stochastic geometry. First, we show the existence of Gibbs facet processes in Rd with repulsive interactions. We also prove that the finite-volume Gibbs facet processes with attractive interactions need not exist. Afterwards, we study Gibbs-Laguerre tessellations of R2. The mentioned existence result cannot be used, since one of its assumptions is not satisfied for tessellations, but we are able to show the existence of an infinite-volume Gibbs-Laguerre process with a particular energy function, under the assumption that we almost surely see a point.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA22-15763S" target="_blank" >GA22-15763S: Strain compatibility issues in mechanically driven martensitic transformations in shape memory alloy polycrystals</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kybernetika
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
59
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
30
Pages from-to
130-159
UT code for WoS article
000973041000007
EID of the result in the Scopus database
2-s2.0-85161856910