Vibrating Microwire Resonators Used as Local Probes of Quantum Turbulence in Superfluid He-4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10467813" target="_blank" >RIV/00216208:11320/23:10467813 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6-UCwfUEQw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6-UCwfUEQw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10909-023-02983-1" target="_blank" >10.1007/s10909-023-02983-1</a>
Alternative languages
Result language
angličtina
Original language name
Vibrating Microwire Resonators Used as Local Probes of Quantum Turbulence in Superfluid He-4
Original language description
We report the use of a 60 mu m thick superconducting NbTi vibrating wire resonator as a local probe of quantum turbulence in superfluid He-4 (He II). Wire resonance is driven via magneto-motive force, exclusively in the laminar hydrodynamic regime. For the detection of quantized vortices, changes in the probe resonant frequency and peak amplitude are measured in reaction to the applied external counterflow. Calibration of the device response is obtained in thermal counterflow in the temperature range from 1.45 to 2.1 K against second sound attenuation data. The main motivation of this work is the development of local probes of quantum turbulence suitable for use in non-homogeneous systems such as flows with spherical or cylindrical symmetry. The frequency response of the devices is described with good accuracy at lower temperatures by considering the balance between viscosity and mutual friction and its effect on the boundary layer. Under the experimental conditions, the fluid-structure interaction cannot be modeled reliably by an effective turbulent viscosity and agrees better with a model of the boundary layer modified by mutual friction. The obtained results may be extended to the interaction of nanoscale devices with sufficiently dense vortex tangles.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GJ20-13001Y" target="_blank" >GJ20-13001Y: Quantum turbulence at the nanoscale</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Low Temperature Physics
ISSN
0022-2291
e-ISSN
1573-7357
Volume of the periodical
212
Issue of the periodical within the volume
5-6
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
168-184
UT code for WoS article
001025027500001
EID of the result in the Scopus database
2-s2.0-85163880578