Algebraic properties of projected problems in LSQR
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468210" target="_blank" >RIV/00216208:11320/23:10468210 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1002/pamm.202300161" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/pamm.202300161</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/pamm.202300161" target="_blank" >10.1002/pamm.202300161</a>
Alternative languages
Result language
angličtina
Original language name
Algebraic properties of projected problems in LSQR
Original language description
LSQR represents a standard Krylov projection method for the solution of systems of linear algebraic equations, linear approximation problems or regularization of discrete inverse problem. Its convergence properties (residual norms, error norms, influence of finite precision arithmetic etc.) have been widely studied. It has been observed that the components of the solution of the projected bidiagonal problem typically increase and their sign alternates. This behavior is the core of approximation properties of LSQR and is observed also for hybrid LSQR with inner Tikhonov regularization. Here we provide rigorous analysis of sign changes and monotonicity of individual components of projected solutions and projected residuals in LSQR. The results hold also for Hybrid LSQR with a fixed inner regularization parameter. The derivations do not rely on maintaining orthogonality in Krylov bases determined by the bidiagonalization process. Numerical illustration is included.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings in Applied Mathematics and Mechanics
ISBN
—
ISSN
1617-7061
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
John Wiley & Sons, Inc.
Place of publication
Weinheim
Event location
Drážďany, Německo
Event date
May 30, 2023
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—