Structural Regulation of Mechanical Gating in Molecular Junctions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468732" target="_blank" >RIV/00216208:11320/23:10468732 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=TK_LqwQgSW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=TK_LqwQgSW</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.nanolett.3c00043" target="_blank" >10.1021/acs.nanolett.3c00043</a>
Alternative languages
Result language
angličtina
Original language name
Structural Regulation of Mechanical Gating in Molecular Junctions
Original language description
In contrast to silicon-based transistors, single molecule junctions can be gated by simple mechanical means. Specifically, charge can be transferred between the junction's electrodes and its molecular bridge when the interelectrode distance is modified, leading to variations in the electronic transport properties of the junction. While this effect has been studied extensively, the influence of the molecular orientation on mechanical gating has not been addressed, despite its potential influence on the gating effectiveness. Here, we show that the same molecular junction can experience either clear mechanical gating or none, depending on the molecular orientation in the junctions. The effect is found in silver-ferrocene-silver break junctions and analyzed in view of ab initio and transport calculations, where the influence of the molecular orbital geometry on charge transfer to or from the molecule is revealed. The molecular orientation is thus a new degree of freedom that can be used to optimize mechanically gated molecular junctions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GA22-22419S" target="_blank" >GA22-22419S: Molecular spintronics: control of spin-orbit fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nano Letters
ISSN
1530-6984
e-ISSN
1530-6992
Volume of the periodical
23
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
3775-3780
UT code for WoS article
000985527500001
EID of the result in the Scopus database
2-s2.0-85159640327