All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

1-convex extensions of incomplete cooperative games and the average value

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468920" target="_blank" >RIV/00216208:11320/23:10468920 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5mbnLLeirx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5mbnLLeirx</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11238-023-09946-8" target="_blank" >10.1007/s11238-023-09946-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    1-convex extensions of incomplete cooperative games and the average value

  • Original language description

    The model of incomplete cooperative games incorporates uncer7tainty into the classical model of cooperative games by considering a partial8 characteristic function. Thus the values for some of the coalitions are not9 known. The main focus of this paper is 1-convexity under this framework.10 We are interested in two heavily intertwined questions. First, given an11 incomplete game, how can we ll in the missing values to obtain a complete12 1-convex game? Second, how to determine in a rational, fair, and ecient way13 the payos of players based only on the known values of coalitions?14 We illustrate the analysis with two classes of incomplete games - minimal15 incomplete games and incomplete games with dened upper vector. To answer16 the rst question, for both classes, we provide a description of the set of 1-17 convex extensions in terms of its extreme points and extreme rays. Based on18 the description of the set of 1-convex extensions, we introduce generalisations19 of three solution concepts for complete games, namely the -value, the Shapley20 value and the nucleolus. For minimal incomplete games, we show that all21 of the generalised values coincide. We call it the average value and provide22 dierent axiomatisations. For incomplete games with dened upper vector, we23 show that the generalised values do not coincide in general. This highlights24 the importance and also the diculty of considering more general classes of25 incomplete games.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50201 - Economic Theory

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theory and Decision

  • ISSN

    0040-5833

  • e-ISSN

    1573-7187

  • Volume of the periodical

    Neudeven

  • Issue of the periodical within the volume

    2023

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    29

  • Pages from-to

  • UT code for WoS article

    001026595300001

  • EID of the result in the Scopus database