All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mixed precision Rayleigh quotient iteration for total least squares problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10469268" target="_blank" >RIV/00216208:11320/23:10469268 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_0zjReMaz0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_0zjReMaz0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11075-023-01665-z" target="_blank" >10.1007/s11075-023-01665-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mixed precision Rayleigh quotient iteration for total least squares problems

  • Original language description

    With the recent emergence of mixed precision hardware, there has been a renewed interest in its use for solving numerical linear algebra problems fast and accurately. The solution of total least squares problems, i.e., solving {$min_{E,r} | [E, r]|_F$} subject to $(A+E)x=b+${$r$}, arises in numerous applications. Solving this problem requires finding the smallest singular value and corresponding right singular vector of $[A,b]$, which is challenging when $A$ is large and sparse. An efficient algorithm for this case due to Bj&quot;{o}rck et al. [SIAM J. Matrix Anal. Appl. 22(2), 2000], called RQI-PCGTLS, is based on Rayleigh quotient iteration coupled with the preconditioned conjugate gradient method.We develop a mixed precision variant of this algorithm, RQI-PCGTLS-MP, in which up to three different precisions can be used. We assume that the lowest precision is used in the computation of the preconditioner, and give theoretical constraints on how this precision must be chosen to ensure stability. In contrast to standard least squares, for total least squares, the resulting constraint depends not only on the matrix $A$, but also on the right-hand side $b$. We perform a number of numerical experiments on model total least squares problems used in the literature, which demonstrate that our algorithm can attain the same accuracy as RQI-PCGTLS albeit with a potential convergence delay due to the use of low precision. Performance modeling shows that the mixed precision approach can achieve up to a $4times$ speedup depending on the size of the matrix and the number of Rayleigh quotient iterations performed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Numerical Algorithms

  • ISSN

    1017-1398

  • e-ISSN

    1572-9265

  • Volume of the periodical

    2023

  • Issue of the periodical within the volume

    05/10/2023

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    22

  • Pages from-to

  • UT code for WoS article

    001079117400001

  • EID of the result in the Scopus database

    2-s2.0-85173767553