All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Scalable Approximate NonSymmetric Autoencoder for Collaborative Filtering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10469915" target="_blank" >RIV/00216208:11320/23:10469915 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/23:00374207

  • Result on the web

    <a href="https://doi.org/10.1145/3604915.3608827" target="_blank" >https://doi.org/10.1145/3604915.3608827</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3604915.3608827" target="_blank" >10.1145/3604915.3608827</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Scalable Approximate NonSymmetric Autoencoder for Collaborative Filtering

  • Original language description

    In the field of recommender systems, shallow autoencoders have recently gained significant attention. One of the most highly acclaimed shallow autoencoders is easer, favored for its competitive recommendation accuracy and simultaneous simplicity. However, the poor scalability of easer (both in time and especially in memory) severely restricts its use in production environments with vast item sets. In this paper, we propose a hyperefficient factorization technique for sparse approximate inversion of the data-Gram matrix used in easer. The resulting autoencoder, sansa, is an end-to-end sparse solution with prescribable density and almost arbitrarily low memory requirements - even for training. As such, sansa allows us to effortlessly scale the concept of easer to millions of items and beyond.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 17th ACM Conference on Recommender Systems

  • ISBN

    979-8-4007-0241-9

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    763-770

  • Publisher name

    ACM

  • Place of publication

    New York, NY, USA

  • Event location

    Singapore, Singapore

  • Event date

    Sep 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article