Number fields without universal quadratic forms of small rank exist in most degrees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472009" target="_blank" >RIV/00216208:11320/23:10472009 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0g-WD1-YN9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0g-WD1-YN9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0305004122000214" target="_blank" >10.1017/S0305004122000214</a>
Alternative languages
Result language
angličtina
Original language name
Number fields without universal quadratic forms of small rank exist in most degrees
Original language description
We prove that in each degree divisible by 2 or 3, there are infinitely many totally real number fields that require universal quadratic forms to have arbitrarily large rank.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GM21-00420M" target="_blank" >GM21-00420M: Universal Quadratic Forms and Class Numbers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Proceedings of the Cambridge Philosophical Society
ISSN
0305-0041
e-ISSN
1469-8064
Volume of the periodical
174
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
7
Pages from-to
225-231
UT code for WoS article
000792207200001
EID of the result in the Scopus database
—