All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Posteriori Error Estimate and Mesh Adaptation for the Numerical Solution of the Richards Equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472964" target="_blank" >RIV/00216208:11320/23:10472964 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-20432-6_12" target="_blank" >https://doi.org/10.1007/978-3-031-20432-6_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-20432-6_12" target="_blank" >10.1007/978-3-031-20432-6_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Posteriori Error Estimate and Mesh Adaptation for the Numerical Solution of the Richards Equation

  • Original language description

    We solve the Richards equation, describing porous media flows, by the space-time discontinuous Galerkin method. We derive a posteriori error estimates using the spatial and temporal reconstructions and obtain an upper bound of the error measured in the dual norm with any unknown constant. We present a numerical example demonstrating the use of the error estimators for a practical problem.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

  • ISBN

    978-3-031-20431-9

  • ISSN

    1439-7358

  • e-ISSN

    2197-7100

  • Number of pages

    16

  • Pages from-to

    209-224

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Wien

  • Event date

    Jul 12, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article