Maximum likelihood estimation of the Hull-White model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473040" target="_blank" >RIV/00216208:11320/23:10473040 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FmVj86LOEf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FmVj86LOEf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jempfin.2022.12.002" target="_blank" >10.1016/j.jempfin.2022.12.002</a>
Alternative languages
Result language
angličtina
Original language name
Maximum likelihood estimation of the Hull-White model
Original language description
We suggest a maximum likelihood estimation method for the popular Hull-White interest rate model. Our method uses a time series of yield curves to estimate model parameters under both risk-neutral and real-world measures. The suggested approach thus offers a solution to two possible drawbacks of calibration to prices of vanilla interest rate derivatives, the current standard for identification of time-inhomogeneous interest rate models. First, our method allows for derivatives pricing on illiquid markets where prices of vanilla products, which the model is calibrated to, are not available. Second, as we identify the real-world measure, we facilitate the use of the Hull-White model for forecasting and hence risk and portfolio management. The main idea of our approach is to maximise the likelihood of yields in periods subsequent to the time at which the model's time-dependent parameter is fitted to a market forward rate curve. The empirical part of the paper implements the suggested estimation approach on EUR interest rate data. We investigate in-sample and out-of-sample performance of the estimated model, and compare estimation with calibration to swaption prices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GX19-28231X" target="_blank" >GX19-28231X: DyMoDiF - Dynamic Models for the Digital Finance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Empirical Finance
ISSN
0927-5398
e-ISSN
1879-1727
Volume of the periodical
70
Issue of the periodical within the volume
JAN 2023
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
227-247
UT code for WoS article
000920747300001
EID of the result in the Scopus database
2-s2.0-85144801573