All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameterized orographic gravity wave drag and dynamical effects in CMIP6 models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473062" target="_blank" >RIV/00216208:11320/23:10473062 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7l.lBK5A85" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7l.lBK5A85</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00382-023-07021-0" target="_blank" >10.1007/s00382-023-07021-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameterized orographic gravity wave drag and dynamical effects in CMIP6 models

  • Original language description

    Orographic gravity waves (OGWs) are an important mechanism for coupling of the free atmosphere with the surface, mediating the momentum and energy transport and influencing the dynamics and circulation especially in the middle-atmosphere. Current global climate models are not able to resolve a large part of the OGW spectrum and hence, OGW effects have to be parameterized in the models. Typically, the only parameterized effect is the OGW induced drag. Despite producing the same quantity as an output and relying on similar assumptions (e.g. instantaneous vertical propagation), the individual OGW parameterization schemes differ in many aspects such as handling of the orography, the inclusion of non-linear effects near the surface and the tuning of the emergent free parameters. In this study, we have reviewed 7 different parameterizations, which are used in 9 different CMIP6 models. We report pronounced differences in the vertical distribution and magnitude of the parameterized OGW drag between the models and study to what extent the inter-model differences can be traced back to the difference in the type and tuning of the schemes. Finally, we demonstrate how the OGW drag differences project to the intermodel differences in the stratospheric dynamics. The study can pave the way for a more systematic research of the OGW parameterizations in the future, with an ultimate goal of lowering the amount of uncertainty of the future climate projections connected with the parameterized effects of unresolved orography.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Climate Dynamics

  • ISSN

    0930-7575

  • e-ISSN

    1432-0894

  • Volume of the periodical

    Neuveden

  • Issue of the periodical within the volume

    13.12.2023

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

  • UT code for WoS article

    001126297600001

  • EID of the result in the Scopus database

    2-s2.0-85179711343