All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A numerical assessment of finite element discretizations for convection-diffusion-reaction equations satisfying discrete maximum principles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473257" target="_blank" >RIV/00216208:11320/23:10473257 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RWI-noPNFO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RWI-noPNFO</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/cmam-2022-0125" target="_blank" >10.1515/cmam-2022-0125</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A numerical assessment of finite element discretizations for convection-diffusion-reaction equations satisfying discrete maximum principles

  • Original language description

    Numerical studies are presented that investigate finite element methods satisfying discrete maximum principles for convection-diffusion-reaction equations. Two linear methods and several nonlinear schemes, some of them proposed only recently, are included in these studies, which consider a number of two-dimensional examples. The evaluation of the results examines the accuracy of the numerical solutions with respect to quantities of interest, like layer widths, and the efficiency of the simulations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Methods in Applied Mathematics

  • ISSN

    1609-4840

  • e-ISSN

    1609-9389

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    20

  • Pages from-to

    969-988

  • UT code for WoS article

    000876568400001

  • EID of the result in the Scopus database

    2-s2.0-85139471556