All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multiscale heat transport with inertia and thermal vortices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473349" target="_blank" >RIV/00216208:11320/23:10473349 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=k3PVVI6Tui" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=k3PVVI6Tui</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1402-4896/acf418" target="_blank" >10.1088/1402-4896/acf418</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multiscale heat transport with inertia and thermal vortices

  • Original language description

    In this paper, we present a Hamiltonian and thermodynamic theory of heat transport on various levels of description. Transport of heat is formulated within kinetic theory of polarized phonons, kinetic theory of unpolarized phonons, hydrodynamics of polarized phonons, and hydrodynamics of unpolarized phonons. These various levels of description are linked by Poisson reductions, where no linearizations are made. Consequently, we obtain a new phonon hydrodynamics that contains convective terms dependent on vorticity of the heat flux, which are missing in the standard theories of phonon hydrodynamics. Within the zero-order Chapman-Enskog reduction, the resulting hydrodynamic equations are hyperbolic and Galilean invariant, while the first Chapman-Enskog expansion gives additional viscous-like terms. The vorticity-dependent terms violate the alignment of the heat flux with the temperature gradient even in the stationary state, which is expressed by a Fourier-Crocco equation. Those terms also cause that temperature plays in heat transport a similar role as pressure in aerodynamics, which is illustrated on numerical simulations of flow past a cylinder. In particular, we show that the vorticity-dependent terms lead to a colder spot just behind the cylinder, and for high-enough Reynolds numbers they lead to the von Karman vortex street.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA23-05736S" target="_blank" >GA23-05736S: Geometric multiscale thermodynamics of complex fluids</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physica Scripta

  • ISSN

    0031-8949

  • e-ISSN

    1402-4896

  • Volume of the periodical

    98

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    SE - SWEDEN

  • Number of pages

    24

  • Pages from-to

    105234

  • UT code for WoS article

    001072142100001

  • EID of the result in the Scopus database

    2-s2.0-85173266094