All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Emulating lateral gravity wave propagation in a global chemistry-climate model (EMAC v2.55.2) through horizontal flux redistribution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473363" target="_blank" >RIV/00216208:11320/23:10473363 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bbo4fTK6.L" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bbo4fTK6.L</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5194/gmd-16-5561-2023" target="_blank" >10.5194/gmd-16-5561-2023</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Emulating lateral gravity wave propagation in a global chemistry-climate model (EMAC v2.55.2) through horizontal flux redistribution

  • Original language description

    The columnar approach of gravity wave (GW) parameterisations in weather and climate models has been identified as a potential reason for dynamical biases in middle-atmospheric dynamics. For example, GW momentum flux (GWMF) discrepancies between models and observations at 60°S arising through the lack of horizontal orographic GW propagation are suspected to cause deficiencies in representing the Antarctic polar vortex. However, due to the decomposition of the model domains onto different computing tasks for parallelisation, communication between horizontal grid boxes is computationally extremely expensive, making horizontal propagation of GWs unfeasible for global chemistry-climate simulations. To overcome this issue, we present a simplified solution to approximate horizontal GW propagation through redistribution of the GWMF at one single altitude by means of tailor-made redistribution maps. To generate the global redistribution maps averaged for each grid box, we use a parameterisation describing orography as a set of mountain ridges with specified location, orientation and height combined with a ray-tracing model describing lateral propagation of so-generated mountain waves. In the global chemistry-climate model (CCM) EMAC (ECHAM MESSy Atmospheric Chemistry), these maps then allow us to redistribute the GW momentum flux horizontally at one level, obtaining an affordable overhead of computing resources. The results of our simulations show GWMF and drag patterns that are horizontally more spread out than with the purely columnar approach; GWs are now also present above the ocean and regions without mountains. In this paper, we provide a detailed description of how the redistribution maps are computed and how the GWMF redistribution is implemented in the CCM. Moreover, an analysis shows why 15 km is the ideal altitude for the redistribution. First results with the redistributed orographic GWMF provide clear evidence that the redistributed GW drag in the Southern Hemisphere has the potential to modify and improve Antarctic polar vortex dynamics, thereby paving the way for enhanced credibility of CCM simulations and projections of polar stratospheric ozone. Copyright:

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

    <a href="/en/project/GC21-20293J" target="_blank" >GC21-20293J: Middle atmosphere localized gravity wave forcing - formation, impact, and long-term evolution (MATELO-FILE)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geoscientific Model Development

  • ISSN

    1991-959X

  • e-ISSN

    1991-9603

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    19

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    23

  • Pages from-to

    5561-5583

  • UT code for WoS article

    001161827800001

  • EID of the result in the Scopus database

    2-s2.0-85177763300