All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Machine-learning abstractions for component-based self-optimizing systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474031" target="_blank" >RIV/00216208:11320/23:10474031 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uNHSdrayu8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uNHSdrayu8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10009-023-00726-x" target="_blank" >10.1007/s10009-023-00726-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Machine-learning abstractions for component-based self-optimizing systems

  • Original language description

    This paper features an approach that combines machine-learning abstractions with a component model. We target modern self-optimizing systems and therefore integrate the machine-learning abstractions into our ensemble-based component model DEECo. We further endow the DEECo component model with abstractions for specifying self-optimization heuristics, which address coordination among multiple components. We demonstrate these abstractions in the context of an Industry 4.0 use case. We argue that incorporating machine learning and optimization heuristics is the key feature for modern smart systems, which learn over time and optimize their behavior at runtime to deal with uncertainty in their environment.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GC20-24814J" target="_blank" >GC20-24814J: FluidTrust – Enabling trust by fluid access control to data and physical resources in Industry 4.0 systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal on Software Tools for Technology Transfer

  • ISSN

    1433-2779

  • e-ISSN

    1433-2787

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    neuveden

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    15

  • Pages from-to

    717-731

  • UT code for WoS article

    001093027600006

  • EID of the result in the Scopus database

    2-s2.0-85175630104