All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A new matrix equation expression for the solution of non-autonomous linear systems of ODEs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474087" target="_blank" >RIV/00216208:11320/23:10474087 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/pamm.202200117" target="_blank" >https://doi.org/10.1002/pamm.202200117</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/pamm.202200117" target="_blank" >10.1002/pamm.202200117</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A new matrix equation expression for the solution of non-autonomous linear systems of ODEs

  • Original language description

    The solution of systems of non-autonomous linear ordinary differential equations is crucial in a variety of applications, suchus nuclear magnetic resonance spectroscopy. A new method with spectral accuracy has been recently introduced in the scalar case. The method is based on a product that generalizes the convolution. In this work, we show that it is possible to extend the method to solve systems of non-autonomous linear ordinary differential equations (ODEs). In this new approach, the ODE solution can be expressed through a linear system that can be equivalently rewritten as a matrix equation. Numerical examples illustrate the method&apos;s efficacy and the low-rank property of the matrix equation solution.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    A Special Issue on ‘92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)’

  • ISBN

  • ISSN

    1617-7061

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    John Wiley &amp; Sons, Inc.

  • Place of publication

    Neuveden

  • Event location

    RWTH Aachen University

  • Event date

    Aug 15, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article