A new matrix equation expression for the solution of non-autonomous linear systems of ODEs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474087" target="_blank" >RIV/00216208:11320/23:10474087 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/pamm.202200117" target="_blank" >https://doi.org/10.1002/pamm.202200117</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/pamm.202200117" target="_blank" >10.1002/pamm.202200117</a>
Alternative languages
Result language
angličtina
Original language name
A new matrix equation expression for the solution of non-autonomous linear systems of ODEs
Original language description
The solution of systems of non-autonomous linear ordinary differential equations is crucial in a variety of applications, suchus nuclear magnetic resonance spectroscopy. A new method with spectral accuracy has been recently introduced in the scalar case. The method is based on a product that generalizes the convolution. In this work, we show that it is possible to extend the method to solve systems of non-autonomous linear ordinary differential equations (ODEs). In this new approach, the ODE solution can be expressed through a linear system that can be equivalently rewritten as a matrix equation. Numerical examples illustrate the method's efficacy and the low-rank property of the matrix equation solution.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
A Special Issue on ‘92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)’
ISBN
—
ISSN
1617-7061
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
John Wiley & Sons, Inc.
Place of publication
Neuveden
Event location
RWTH Aachen University
Event date
Aug 15, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—