Reconstruction of asteroid spin states from Gaia DR3 photometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474764" target="_blank" >RIV/00216208:11320/23:10474764 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cyEWJWDqSR" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cyEWJWDqSR</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202345889" target="_blank" >10.1051/0004-6361/202345889</a>
Alternative languages
Result language
angličtina
Original language name
Reconstruction of asteroid spin states from Gaia DR3 photometry
Original language description
Aims. Gaia Data Release 3 contains accurate photometric observations of more than 150 000 asteroids covering a time interval of 34 months. With a total of about 3 000 000 measurements, a typical number of observations per asteroid ranges from a few to several tens. We aimed to reconstruct the spin states and shapes of asteroids from this dataset. Methods. We computed the viewing and illumination geometry for each individual observation and used the light curve inversion method to find the best-fit asteroid model, which was parameterized by the sidereal rotation period, the spin axis direction, and a low-resolution convex shape. To find the best-fit model, we ran the inversion for tens of thousands of trial periods on interval 2-10 000 h, with tens of initial pole directions. To find the correct rotation period, we also used a triaxial ellipsoid model for the shape approximation. Results. In most cases the number of data points was insufficient to uniquely determine the rotation period. However, for about 8600 asteroids we were able to determine the spin state uniquely together with a low-resolution convex shape model. This large sample of new asteroid models enables us to study the spin distribution in the asteroid population. The distribution of spins confirms previous findings that (i) small asteroids have poles clustered toward ecliptic poles, likely because of the YORP-induced spin evolution, (ii) asteroid migration due to the Yarkovsky effect depends on the spin orientation, and (iii) members of asteroid families have the sense of rotation correlated with their proper semimajor axis: over the age of the family, orbits of prograde rotators evolved, due to the Yarkovsky effect, to larger semimajor axes, while those of retrograde rotators drifted in the opposite direction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/GA20-08218S" target="_blank" >GA20-08218S: Machine learning algorithms applied to asteroid shape reconstruction in the era of big data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Volume of the periodical
675
Issue of the periodical within the volume
červenec
Country of publishing house
FR - FRANCE
Number of pages
13
Pages from-to
A24
UT code for WoS article
001025100700021
EID of the result in the Scopus database
2-s2.0-85150371969