On torsion in linearized Legendrian contact homology
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474814" target="_blank" >RIV/00216208:11320/23:10474814 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5-E5OsSbeo" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5-E5OsSbeo</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218216523500566" target="_blank" >10.1142/S0218216523500566</a>
Alternative languages
Result language
angličtina
Original language name
On torsion in linearized Legendrian contact homology
Original language description
In this short note, we discuss certain examples of Legendrian submanifolds, whose linearized Legendrian contact (co)homology groups over integers have non-vanishing algebraic torsion. More precisely, for a given arbitrary finitely generated abelian group G and a positive integer n = 3, n ?4, we construct examples of Legendrian submanifolds of the standard contact vector space R2n+1, whose n-1th linearized Legendrian contact (co)homology over Z computed with respect to a certain augmentation is isomorphic to G.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Knot Theory and its Ramifications
ISSN
0218-2165
e-ISSN
1793-6527
Volume of the periodical
32
Issue of the periodical within the volume
07
Country of publishing house
SG - SINGAPORE
Number of pages
6
Pages from-to
2350056
UT code for WoS article
001046457600006
EID of the result in the Scopus database
2-s2.0-85168978365