All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On torsion in linearized Legendrian contact homology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474814" target="_blank" >RIV/00216208:11320/23:10474814 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5-E5OsSbeo" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5-E5OsSbeo</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218216523500566" target="_blank" >10.1142/S0218216523500566</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On torsion in linearized Legendrian contact homology

  • Original language description

    In this short note, we discuss certain examples of Legendrian submanifolds, whose linearized Legendrian contact (co)homology groups over integers have non-vanishing algebraic torsion. More precisely, for a given arbitrary finitely generated abelian group G and a positive integer n = 3, n ?4, we construct examples of Legendrian submanifolds of the standard contact vector space R2n+1, whose n-1th linearized Legendrian contact (co)homology over Z computed with respect to a certain augmentation is isomorphic to G.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Knot Theory and its Ramifications

  • ISSN

    0218-2165

  • e-ISSN

    1793-6527

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    07

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    6

  • Pages from-to

    2350056

  • UT code for WoS article

    001046457600006

  • EID of the result in the Scopus database

    2-s2.0-85168978365