Partial fraction decomposition for rational Pythagorean hodograph curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474945" target="_blank" >RIV/00216208:11320/23:10474945 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=z93.2a2B7k" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=z93.2a2B7k</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2023.115196" target="_blank" >10.1016/j.cam.2023.115196</a>
Alternative languages
Result language
angličtina
Original language name
Partial fraction decomposition for rational Pythagorean hodograph curves
Original language description
All rational parametric curves with prescribed polynomial tangent direction form a vector space. Via tangent directions with rational norm, this includes the important case of rational Pythagorean hodograph curves. We study vector subspaces defined by fixing the denominator polynomial and describe the construction of canonical bases for them. We also show (as an analogy to the fraction decomposition of rational functions) that any element of the vector space can be obtained as a finite sum of curves with single roots at the denominator. Our results give insight into the structure of these spaces, clarify the role of their polynomial and truly rational (non-polynomial) curves, and suggest applications to interpolation problems. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
1879-1778
Volume of the periodical
428
Issue of the periodical within the volume
15 August 2023
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
115196
UT code for WoS article
000955892600001
EID of the result in the Scopus database
2-s2.0-85150028013