A note on the Hamiltonian structure of transgression forms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475034" target="_blank" >RIV/00216208:11320/23:10475034 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=C31m5eiXbl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=C31m5eiXbl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/JHEP12(2023)190" target="_blank" >10.1007/JHEP12(2023)190</a>
Alternative languages
Result language
angličtina
Original language name
A note on the Hamiltonian structure of transgression forms
Original language description
By incorporating two gauge connections, transgression forms provide a generalization of Chern-Simons actions that are genuinely gauge-invariant on bounded manifolds. In this work, we show that, when defined on a manifold with a boundary, the Hamiltonian formulation of a transgression field theory can be consistently carried out without the need to implement regularizing boundary terms at the level of first-class constraints. By considering boundary variations of the relevant functionals in the Poisson brackets, the surface integral in the very definition of a transgression action can be translated into boundary contributions in the generators of gauge transformations and diffeomorphisms. This prescription systematically leads to the corresponding surface charges of the theory, reducing to the general expression for conserved charges in (higher-dimensional) Chern-Simons theories when one of the gauge connections in the transgression form is set to zero.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of High Energy Physics
ISSN
1029-8479
e-ISSN
—
Volume of the periodical
Neuveden
Issue of the periodical within the volume
12
Country of publishing house
DE - GERMANY
Number of pages
25
Pages from-to
190
UT code for WoS article
001137761300002
EID of the result in the Scopus database
2-s2.0-85181189876