All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Monovacancy-hydrogen interaction in pure aluminum: Experimental and ab-initio theoretical positron annihilation study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475224" target="_blank" >RIV/00216208:11320/23:10475224 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZrJV9M.GAq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZrJV9M.GAq</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.actamat.2023.118770" target="_blank" >10.1016/j.actamat.2023.118770</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Monovacancy-hydrogen interaction in pure aluminum: Experimental and ab-initio theoretical positron annihilation study

  • Original language description

    We report here on hydrogen-vacancy interactions in high purity aluminum by employing positron annihilation spectroscopy (PAS) analysis of hydrogen-loaded samples, aiming to study the mobility of vacancies. The samples were heat treated at 893 K in an atmosphere consisting of a mixture of H2 and Ar gas and, thus, loaded with hydrogen. The samples were then quenched to ice water and subsequently measured in-situ at different tem-peratures. In parallel we performed ab-initio density functional theory (DFT) calculations of lifetimes of positrons trapped in vacancies associated with 1-8 H atoms. Our experimental results suggest in comparison with the ab-initio calculations that complexes of vacancies with one hydrogen atom (V-H pairs) were formed in Al samples annealed in a mixture of H2 and Ar gas. Furthermore, hydrogen absorbed in aluminum immobilizes vacancies, i. e. the recovery of vacancies is delayed from 220 K up to around 280 K. At that temperature, V-H complexes start to dissociate, and hydrogen atoms previously bound to vacancies are released. In contrast, for Al samples not loaded with hydrogen isolated monovacancies become mobile around 220 K. In both cases mobile vacancies start to form vacancy clusters. From our experimental data we determined that the formation energy of mono-vacancies in Al is 0.62 +/- 0.01 eV. This value is in very good agreement with 0.63 eV obtained by our ab-initio DFT calculations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Materialia

  • ISSN

    1359-6454

  • e-ISSN

    1873-2453

  • Volume of the periodical

    248

  • Issue of the periodical within the volume

    15 April 2023

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    118770

  • UT code for WoS article

    000995002900001

  • EID of the result in the Scopus database

    2-s2.0-85149057399