Kinematic Lie Algebras from Twistor Spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475412" target="_blank" >RIV/00216208:11320/23:10475412 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JH9jbhEbwx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JH9jbhEbwx</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevLett.131.041603" target="_blank" >10.1103/PhysRevLett.131.041603</a>
Alternative languages
Result language
angličtina
Original language name
Kinematic Lie Algebras from Twistor Spaces
Original language description
We analyze theories with color-kinematics duality from an algebraic perspective and find that any such theory has an underlying BV-algebra, extending the ideas of Reiterer [A homotopy BV algebra for Yang- Mills and color-kinematics, arXiv:1912.03110.]. Conversely, we show that any theory with a BV-algebra features a kinematic Lie algebra that controls interaction vertices, both on shell and off shell. We explain that the archetypal example of a theory with a BV-algebra is Chern-Simons theory, for which the resulting kinematic Lie algebra is isomorphic to the Schouten-Nijenhuis algebra on multivector fields. The BV-algebra implies the known color-kinematics duality of Chern-Simons theory. Similarly, we show that holomorphic and Cauchy-Riemann Chern-Simons theories come with BV-algebras and that, on the appropriate twistor spaces, these theories organize and identify kinematic Lie algebras for self-dual and full Yang-Mills theories, as well as the currents of any field theory with a twistorial description. We show that this result extends to the loop level under certain assumptions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review Letters
ISSN
0031-9007
e-ISSN
1079-7114
Volume of the periodical
131
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
041603
UT code for WoS article
001063206900001
EID of the result in the Scopus database
2-s2.0-85166737561