All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weak Limit of Homeomorphisms in W1,n-1 and (INV) Condition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475521" target="_blank" >RIV/00216208:11320/23:10475521 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UNnHqUgH3A" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UNnHqUgH3A</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00205-023-01911-7" target="_blank" >10.1007/s00205-023-01911-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weak Limit of Homeomorphisms in W1,n-1 and (INV) Condition

  • Original language description

    Let Omega, Omega&apos; subset of R-3 be Lipschitz domains, let f(m) : Omega -&gt; Omega&apos; be a sequence of homeomorphisms with prescribed Dirichlet boundary condition and sup(m) integral(Omega) (|D integral(m)|(2) + 1/J(fm)(2)) &lt; infinity. Let f be a weak limit of f(m) in W-1,W-2. We show that f is invertible a.e., and more precisely that it satisfies the (INV) condition of Conti and De Lellis, and thus that it has all of the nice properties of mappings in this class. Generalization to higher dimensions and an example showing sharpness of the condition 1/J(f)(2) is an element of L-1 are also given. Using this example we also show that, unlike the planar case, the class of weak limits and the class of strong limits of W-1,W-2 Sobolev homeomorphisms in R-3 are not the same.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Archive for Rational Mechanics and Analysis

  • ISSN

    0003-9527

  • e-ISSN

    1432-0673

  • Volume of the periodical

    247

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    54

  • Pages from-to

    80

  • UT code for WoS article

    001049825100001

  • EID of the result in the Scopus database

    2-s2.0-85168364752