All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Frechet differentiability via partial Frechet differentiability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475585" target="_blank" >RIV/00216208:11320/23:10475585 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rg~m4_.I9d" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rg~m4_.I9d</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/1213-7243.2023.025" target="_blank" >10.14712/1213-7243.2023.025</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Frechet differentiability via partial Frechet differentiability

  • Original language description

    Let X-1 , ... , X-n be Banach spaces and f a real function on X = X-1 x &lt;middle dot&gt; &lt;middle dot&gt; &lt;middle dot&gt; x X-n. Let A(f) be the set of all points x is an element of X at which f is partially Frechet differentiable but is not Frechet differentiable. Our results imply that if X-1 , ... , Xn-1 are Asplund spaces and f is continuous (respectively Lipschitz) on X, then A(f) is a first category set (respectively a sigma-upper porous set). We also prove that if X, Y are separable Banach spaces and f : X -&gt; Y is a Lipschitz mapping, then there exists a sigma-upper porous set A subset of X such that f is Frechet differentiable at every point x is an element of X A at which it is Frechet differentiable along a closed subspace of finite codimension and G &amp; aacute;teaux differentiable. A number of related more general results are also proved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

    1213-7243

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    23

  • Pages from-to

    185-207

  • UT code for WoS article

    001100839300004

  • EID of the result in the Scopus database