All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Dataset and Strong Baselines for Classification of Czech News Texts

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475727" target="_blank" >RIV/00216208:11320/23:10475727 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-40498-6_4" target="_blank" >https://doi.org/10.1007/978-3-031-40498-6_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-40498-6_4" target="_blank" >10.1007/978-3-031-40498-6_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Dataset and Strong Baselines for Classification of Czech News Texts

  • Original language description

    Pre-trained models for Czech Natural Language Processing are often evaluated on purely linguistic tasks (POS tagging, parsing, NER) and relatively simple classification tasks such as sentiment classification or article classification from a single news source. As an alternative, we present CZEch NEws Classification dataset (CZE-NEC), one of the largest Czech classification datasets, composed of news articles from various sources spanning over twenty years, which allows a more rigorous evaluation of such models. We define four classification tasks: news source, news category, inferred author&apos;s gender, and day of the week. To verify the task difficulty, we conducted a human evaluation, which revealed that human performance lags behind strong machine-learning baselines built upon pre-trained transformer models. Furthermore, we show that language-specific pre-trained encoder analysis outperforms selected commercially available large-scale generative language models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Artificial Intelligence

  • ISBN

    978-3-031-40497-9

  • ISSN

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    33-44

  • Publisher name

    Springer

  • Place of publication

    Cham, Switzerland

  • Event location

    Plzeň, Czechia

  • Event date

    Sep 4, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article