A Dataset and Strong Baselines for Classification of Czech News Texts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475727" target="_blank" >RIV/00216208:11320/23:10475727 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-40498-6_4" target="_blank" >https://doi.org/10.1007/978-3-031-40498-6_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-40498-6_4" target="_blank" >10.1007/978-3-031-40498-6_4</a>
Alternative languages
Result language
angličtina
Original language name
A Dataset and Strong Baselines for Classification of Czech News Texts
Original language description
Pre-trained models for Czech Natural Language Processing are often evaluated on purely linguistic tasks (POS tagging, parsing, NER) and relatively simple classification tasks such as sentiment classification or article classification from a single news source. As an alternative, we present CZEch NEws Classification dataset (CZE-NEC), one of the largest Czech classification datasets, composed of news articles from various sources spanning over twenty years, which allows a more rigorous evaluation of such models. We define four classification tasks: news source, news category, inferred author's gender, and day of the week. To verify the task difficulty, we conducted a human evaluation, which revealed that human performance lags behind strong machine-learning baselines built upon pre-trained transformer models. Furthermore, we show that language-specific pre-trained encoder analysis outperforms selected commercially available large-scale generative language models.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Artificial Intelligence
ISBN
978-3-031-40497-9
ISSN
—
e-ISSN
1611-3349
Number of pages
12
Pages from-to
33-44
Publisher name
Springer
Place of publication
Cham, Switzerland
Event location
Plzeň, Czechia
Event date
Sep 4, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—