Assessing Word Importance Using Models Trained for Semantic Tasks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475877" target="_blank" >RIV/00216208:11320/23:10475877 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:HAZ4W4VN
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Assessing Word Importance Using Models Trained for Semantic Tasks
Original language description
Many NLP tasks require to automatically identify the most significant words in a text. In this work, we derive word significance from models trained to solve semantic task: Natural Language Inference and Paraphrase Identification. Using an attribution method aimed to explain the predictions of these models, we derive importance scores for each input token. We evaluate their relevance using a so-called cross-task evaluation: Analyzing the performance of one model on an input masked according to the other model's weight, we show that our method is robust with respect to the choice of the initial task. Additionally, we investigate the scores from the syntax point of view and observe interesting patterns, e.g. words closer to the root of a syntactic tree receive higher importance scores. Altogether, these observations suggest that our method can be used to identify important words in sentences without any explicit word importance labeling in training.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Findings of the Association for Computational Linguistics: ACL 2023
ISBN
978-1-959429-62-3
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
8846-8856
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Toronto, Canada
Event date
Jul 9, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—