Rings and Modules in Kan Spectra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475895" target="_blank" >RIV/00216208:11320/23:10475895 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3b1rPoqX3r" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3b1rPoqX3r</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10485-023-09719-y" target="_blank" >10.1007/s10485-023-09719-y</a>
Alternative languages
Result language
angličtina
Original language name
Rings and Modules in Kan Spectra
Original language description
The purpose of this paper is to set up derived categories of sheaves of E-8-rings and modules over non-derived sites, in particular over topological spaces. This theory opens up certain new capabilities in spectral algebra. For example, as outlined in the last section of the present paper, using these concepts, one can conjecture a spectral algebra-based generalization of the geometric Langlands program to manifolds of dimension > 2. As explained in a previous paper (Chen et al. in Theory Appl Categ 32:1363-1396, 2017) the only theory of sheaves of spectra on non-derived sites known to date which has well-behave pushforwards is based on Kan spectra, which, however, are reputed not to possess a smash product rigid enough for discussing E-8-objects. The bulk of this paper is devoted to remedying this situation, i.e. defining a more rigid smash product of Kan spectra, and using it to construct the desired derived categories.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
1572-9095
Volume of the periodical
31
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
33
Pages from-to
18
UT code for WoS article
000964461900001
EID of the result in the Scopus database
2-s2.0-85152687855