Zigzagging through acyclic orientations of chordal graphs and hypergraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476041" target="_blank" >RIV/00216208:11320/23:10476041 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1137/1.9781611977554.ch117" target="_blank" >https://doi.org/10.1137/1.9781611977554.ch117</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/1.9781611977554.ch117" target="_blank" >10.1137/1.9781611977554.ch117</a>
Alternative languages
Result language
angličtina
Original language name
Zigzagging through acyclic orientations of chordal graphs and hypergraphs
Original language description
In 1993, Savage, Squire, and West described an inductive construction for generating every acyclic orientation of a chordal graph exactly once, flipping one arc at a time. We provide two generalizations of this result. Firstly, we describe Gray codes for acyclic orientations of hypergraphs that satisfy a simple ordering condition, which generalizes the notion of perfect elimination order of graphs. This unifies the Savage-Squire-West construction with a recent algorithm for generating elimination trees of chordal graphs (SODA 2022). Secondly, we consider quotients of lattices of acyclic orientations of chordal graphs, and we provide a Gray code for them, addressing a question raised by Pilaud (FPSAC 2022). This also generalizes a recent algorithm for generating lattice congruences of the weak order on the symmetric group (SODA 2020). Our algorithms are derived from the Hartung-Hoang-Mütze-Williams combinatorial generation framework, and they yield simple algorithms for computing Hamilton paths and cycles on large classes of polytopes, including chordal nestohedra and quotientopes. In particular, we derive an efficient implementation of the Savage-Squire-West construction. Along the way, we give an overview of old and recent results about the polyhedral and order-theoretic aspects of acyclic orientations of graphs and hypergraphs.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-15272S" target="_blank" >GA22-15272S: Principles of combinatorial generation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
ISBN
978-1-61197-755-4
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
3029-3042
Publisher name
Society for Industrial and Applied Mathematics
Place of publication
Philadelphia, USA
Event location
Florenc, Italy
Event date
Jan 22, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—