All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The integrated galaxy-wide stellar initial mass function over the radial acceleration range of early-type galaxies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476064" target="_blank" >RIV/00216208:11320/23:10476064 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZVyt-UDasn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZVyt-UDasn</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/mnras/stad2825" target="_blank" >10.1093/mnras/stad2825</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The integrated galaxy-wide stellar initial mass function over the radial acceleration range of early-type galaxies

  • Original language description

    The observed radial accelerations of 462 early-type galaxies (ETGs) at their half-mass radii are discussed. They are compared to the baryonic masses of the same galaxies, which are derived from theoretical expectations for their stellar populations and cover a range from to . Both quantities are plotted against each other, and it is tested whether they lie (within errors) along theoretical radial acceleration relations (RARs). We choose the Newtonian RAR and two Milgromian, or MONDian RARs. At low radial accelerations (corresponding to low masses), the Newtonian RAR fails without non-baryonic dark matter, but the two MONDian ones may work, provided moderate out-of-equilibrium dynamics in some of the low-mass ETGs. However all three RARs fail at high accelerations (corresponding to high masses) if all ETGs have formed their stellar populations with the canonical stellar initial mass function (IMF). A much better agreement with the observations can however be accomplished, if the theory of the integrated galaxy-wide stellar initial mass functions (IGIMFs) is used instead. This is because the IGIMF-theory predicts the formation of an overabundance of stellar remnants during the lifetime of the massive ETGs. Thus their baryonic masses today are higher than they would be if the ETGs had formed with a canonical IMF. Also the masses of the stellar-mass black holes should be rather high, which would mean that most of them probably formed when the massive ETGs were not as metal-enriched as they are today. The IGIMF-approach confirms downsizing.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GA20-21855S" target="_blank" >GA20-21855S: The dynamics of dense star clusters with primordial binaries and massive black holes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monthly Notices of the Royal Astronomical Society

  • ISSN

    0035-8711

  • e-ISSN

    1365-2966

  • Volume of the periodical

    526

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    22

  • Pages from-to

    2301-2322

  • UT code for WoS article

    001078226700049

  • EID of the result in the Scopus database

    2-s2.0-85174713164