CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476079" target="_blank" >RIV/00216208:11320/23:10476079 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval
Original language description
We present the Charles University system for the MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval.The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages.Our solutions to both subtasks rely on the translate-test approach.We first translate the unlabeled examples into English using a multilingual machine translation model.Then, we run inference on the translated data using a strong task-specific model.Finally, we project the labeled data back into the original language.To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model.In both settings, we experiment with finetuning the classification models on the translated data.However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the The 2nd Workshop on Multi-lingual Representation Learning (MRL)
ISBN
979-8-89176-056-1
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
302-309
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Singapore, Singapore
Event date
Dec 7, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—