Approximation Algorithms and Lower Bounds for Graph Burning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476410" target="_blank" >RIV/00216208:11320/23:10476410 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.9" target="_blank" >https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.9" target="_blank" >10.4230/LIPIcs.APPROX/RANDOM.2023.9</a>
Alternative languages
Result language
angličtina
Original language name
Approximation Algorithms and Lower Bounds for Graph Burning
Original language description
Graph Burning models information spreading in a given graph as a process such that in each step one node is infected (informed) and also the infection spreads to all neighbors of previously infected nodes. Formally, given a graph G = (V, E), possibly with edge lengths, the burning number b(G) is the minimum number g such that there exist nodes v0, . . ., vg-1 in V satisfying the property that for each u ELEMENT OF V there exists i ELEMENT OF {0, . . ., g - 1} so that the distance between u and vi is at most i. We present a randomized 2.314-approximation algorithm for computing the burning number of a general graph, even with arbitrary edge lengths. We complement this by an approximation lower bound of 2 for the case of equal length edges, and a lower bound of 4/3 for the case when edges are restricted to have length 1. This improves on the previous 3-approximation algorithm and an APX-hardness result.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-296-9
ISSN
1868-8969
e-ISSN
—
Number of pages
17
Pages from-to
—
Publisher name
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Place of publication
Dagstuhl, Germany
Event location
Atlanta, GA, USA
Event date
Sep 11, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—