All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximation Algorithms and Lower Bounds for Graph Burning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476410" target="_blank" >RIV/00216208:11320/23:10476410 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.9" target="_blank" >https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.9" target="_blank" >10.4230/LIPIcs.APPROX/RANDOM.2023.9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximation Algorithms and Lower Bounds for Graph Burning

  • Original language description

    Graph Burning models information spreading in a given graph as a process such that in each step one node is infected (informed) and also the infection spreads to all neighbors of previously infected nodes. Formally, given a graph G = (V, E), possibly with edge lengths, the burning number b(G) is the minimum number g such that there exist nodes v0, . . ., vg-1 in V satisfying the property that for each u ELEMENT OF V there exists i ELEMENT OF {0, . . ., g - 1} so that the distance between u and vi is at most i. We present a randomized 2.314-approximation algorithm for computing the burning number of a general graph, even with arbitrary edge lengths. We complement this by an approximation lower bound of 2 for the case of equal length edges, and a lower bound of 4/3 for the case when edges are restricted to have length 1. This improves on the previous 3-approximation algorithm and an APX-hardness result.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-296-9

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Atlanta, GA, USA

  • Event date

    Sep 11, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article