From χ- to χ_p-bounded classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476568" target="_blank" >RIV/00216208:11320/23:10476568 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=shmtzq0fGl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=shmtzq0fGl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2021.05.006" target="_blank" >10.1016/j.jctb.2021.05.006</a>
Alternative languages
Result language
angličtina
Original language name
From χ- to χ_p-bounded classes
Original language description
chi-bounded classes are studied here in the context of star colorings and, more generally, chi(p)-colorings. This fits to a general scheme of sparsity and leads to natural extensions of the notion of bounded expansion class. In this paper we solve two conjectures related to star coloring (i.e. chi(2)) boundedness. One of the conjectures is disproved and in fact we determine which weakening holds true. chi(p)-boundedness leads to more stability and we give structural characterizations of (strong and weak) chi(p)-bounded classes. We also generalize a result of Wood relating the chromatic number of a graph to the star chromatic number of its 1-subdivision. As an application of our characterizations, among other things, we show that for every odd integer g > 3 even hole-free graphs G contain at most phi(g, omega(G)) |G| holes of length g. (c) 2021 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
1096-0902
Volume of the periodical
158
Issue of the periodical within the volume
Part 1
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
186-209
UT code for WoS article
000901805500008
EID of the result in the Scopus database
2-s2.0-85108556243