Well-posed nonvacuum solutions in Robinson-Trautman geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476625" target="_blank" >RIV/00216208:11320/23:10476625 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zgVRTbWfv6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zgVRTbWfv6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.108.124076" target="_blank" >10.1103/PhysRevD.108.124076</a>
Alternative languages
Result language
angličtina
Original language name
Well-posed nonvacuum solutions in Robinson-Trautman geometry
Original language description
We study nonlinear matter models compatible with radiative Robinson-Trautman spacetimes and analyze their stability and well-posedness. The results lead us to formulate a conjecture relating the (in)stability and well/ill-posedness to the character of singularity appearing in the solutions. We consider two types of nonlinear electrodynamics models, namely we provide a radiative ModMax solution and extend recent results for the RegMax model by considering the magnetically charged case. In both cases, we investigate linear perturbations around stationary spherically symmetric solutions to determine the stability and principal symbol of the system to argue about well-posedness of these geometries. Additionally, we consider a nonlinear sigma model as a source for Robinson-Trautman geometry. This leads to stationary solutions with toroidal (as opposed to spherical) topology thus demanding modification of the analysis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Volume of the periodical
108
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
124076
UT code for WoS article
001145867000013
EID of the result in the Scopus database
2-s2.0-85180961733